Alcohols & Phenols – Quick, Friendly Notes 📚

Alcohols, phenols and their reactions pop up everywhere in organic chemistry questions. Here’s a chat-style summary that keeps the maths neat with KaTeX, sprinkles of emojis for fun, and just the facts you need.:contentReference[oaicite:0]{index=0}


1 ️⃣ Structure & Bonding 🔬

  • In simple alcohols the C–O–H angle is a bit under the perfect tetrahedral value (109° 28′) because the two lone-pairs on oxygen push bonds closer together.:contentReference[oaicite:1]{index=1}
  • Phenol’s C–O bond is shorter (136 pm) than methanol’s thanks to partial double-bond character (lone-pair ↔ ring conjugation) and the sp2 carbon on the ring.:contentReference[oaicite:2]{index=2}

2 ️⃣ Making Alcohols 🧪

2.1 From alkenes

  1. Acid-catalysed hydration
    \( \text{RCH}\!=\!\text{CH}_2 + \mathrm{H_2O} \xrightarrow[\text{H}_2\mathrm{O}]{\mathrm{H}^+} \text{RCH(OH)CH}_3 \)
    Markovnikov addition via protonation → carbocation → water attack → deprotonation.:contentReference[oaicite:3]{index=3}
  2. Hydroboration–oxidation
    \( (\mathrm{BH_3})_2 + \text{alkene} \rightarrow \text{trialkyl-B} \xrightarrow[\mathrm{NaOH}]{\mathrm{H_2O_2}} \text{anti-Markovnikov alcohol} \) 🎯 Excellent yields!:contentReference[oaicite:4]{index=4}

2.2 From carbonyl compounds

  • Reduce aldehydes/ketones with H2/Pt, NaBH4 or LiAlH4 → primary or secondary alcohol.:contentReference[oaicite:5]{index=5}
  • Reduce acids/esters using LiAlH4 (lab) or convert ester → catalytic H2 (industry) → primary alcohol.:contentReference[oaicite:6]{index=6}

2.3 With Grignard reagents

\( \text{R–MgX} + \text{C=O} \xrightarrow{\text{dry ether}} \) adduct → \( \xrightarrow{\text{H}_2\text{O}} \) alcohol.

  • Methanal → 1° alcohol
  • Other aldehydes → 2° alcohol
  • Ketones → 3° alcohol

Handy memory: aldehyde Adds one carbon; ketone Keeps carbon count. 😉:contentReference[oaicite:7]{index=7}


3 ️⃣ Making Phenols 🌿

  1. Fused NaOH on haloarene (623 K, 320 atm) → sodium phenoxide → acidify.🔧
  2. From benzenesulphonic acid: sulphonate benzene → melt with NaOH → acidify.🌀
  3. Diazonium salt hydrolysis: warm \(\mathrm{ArN_2^+Cl^-}\) with water → phenol + N2.🎈
  4. Cumene process: air-oxidise cumene → cumene-hydro­peroxide → dilute acid gives phenol + acetone (bonus co-product 💸).:contentReference[oaicite:8]{index=8}

4 ️⃣ Physical Properties 🌡️

  • Boiling point rises with chain length and falls with branching. Hydrogen bonding makes alcohols/phenols boil much higher than ethers or alkanes of similar mass.🔥:contentReference[oaicite:9]{index=9}
  • Solubility comes from hydrogen-bonding with water. Small chains = fully miscible; big hydrophobic groups break the party.💧:contentReference[oaicite:10]{index=10}

5 ️⃣ Reactions of Alcohols 🧩

5.1 Cleaving the O–H bond (acidity) ⚡

  • Metals: \( 2\,\text{ROH} + 2\,\text{Na} \rightarrow 2\,\text{RONa} + \text{H}_2 \uparrow \)
  • Esterification: \( \text{ROH} + \text{R’COOH} \xrightarrow[\text{conc H_2SO_4}]{} \text{R’COOR} + \text{H}_2\text{O} \) (reversible, remove water). Aspirin forms by acetylating salicylic acid.💊
  • Acid strength order: water > alcohols (3° < 2° < 1°). Phenols beat alcohols thanks to resonance-stabilised phenoxide ion.🔋:contentReference[oaicite:11]{index=11}

5.2 Cleaving the C–O bond 🛠️

ReactionOutcome
HX (Lucas test)3° alcohol → turbidity fast; 2° slow; 1° none at r.t.
PBr3/PCl3ROH → RBr/RCl
Dehydration (conc H2SO4, 443 K)Alkene; order: 3° > 2° > 1°
Oxidation1° → aldehyde → acid (KMnO4); 2° → ketone (CrO3); 3° resists oxidation

Tip: passing vapours over hot Cu (573 K) dehydrogenates 1°/2° alcohols.🔥:contentReference[oaicite:12]{index=12}


6 ️⃣ Reactions of Phenols 🎨

6.1 Electrophilic aromatic substitution

  • Nitration (dil HNO3, 298 K): mix of o- and p- nitrophenols (separate by steam distillation). Concentrated acid gives picric acid (2,4,6-trinitrophenol).💥
  • Halogenation:
    • Br2 in CHCl3/CS2 (cold) → o/p-bromophenol.
    • Br2 water → 2,4,6-tribromophenol (white ppt).⬜

6.2 Name reactions to remember

  • Kolbe: \( \text{C}_6\text{H}_5\text{ONa} + \text{CO}_2 \xrightarrow{473\,\text{K}} \)
    salicylic acid (o--hydroxybenzoic acid).🌿
  • Reimer–Tiemann: Phenol + CHCl3 + NaOH → salicyl­aldehyde (o--hydroxybenzaldehyde).🍒
  • Zn dust strips –OH → benzene.🌀
  • Oxidation with chromic acid → benzoquinone; slow air oxidation darkens stored phenol.🎨

Important Concepts for NEET ⭐

  • Hydroboration–oxidation gives anti-Markovnikov alcohols with almost 100 % yield.🔄
  • Lucas test speed ranks 3° > 2° > 1°; trusty for classifying alcohols in viva.⏱️
  • Kolbe (→ salicylic acid) and Reimer–Tiemann (→ salicylaldehyde) turn phenol into ortho-products tested often.🎯
  • Electron-withdrawing –NO2 groups boost phenol acidity; pKa drops dramatically (phenol ≈ 10, 2,4,6-trinitrophenol ≈ 7).📉
  • Order of ease for dehydration & carbocation formation: 3° > 2° > 1° — use it to predict alkene products quickly.🚦

✨ Happy studying & good luck! ✨