Magnetisation & Magnetic Intensity 📘

1 ⭐ Magnetisation (M)

Every bit of matter contains tiny current loops (mostly orbiting electrons) that act like little magnets. When we add them all up inside a chunk of material, we get its magnetisation:
\[ M=\frac{m_{\text{net}}}{V}\tag{5.7} \] Here \(m_{\text{net}}\) is the net magnetic moment and \(V\) is the volume. \(M\) points in a specific direction and is measured in amperes per metre (A m−1). 😊 :contentReference[oaicite:0]{index=0}

2 🔌 Field inside a long solenoid

  • Without any material core, the field is \[ B_0=\mu_0 n I \tag{5.8} \] where \(n\) = turns per metre and \(I\) = current.
  • Put a magnetised material inside and the field grows: \[ B=B_0+B_m \tag{5.9} \] with the extra piece \[ B_m=\mu_0 M \tag{5.10} \]

More magnetisation ⇒ stronger total field! :contentReference[oaicite:1]{index=1}

3 💡 Magnetic Intensity (H)

We split the total field into an “external” part and the material’s own response by defining \[ \mathbf H=\frac{\mathbf B}{\mu_0}-\mathbf M \tag{5.11} \] so that \[ \mathbf B=\mu_0(\mathbf H+\mathbf M). \tag{5.12} \] Both \(H\) and \(M\) share the same units (A m−1). :contentReference[oaicite:2]{index=2}

4 🧲 Susceptibility & Permeability

External field tries to “align” the tiny magnets, giving the rule \[ M=\chi\,H \tag{5.13} \] where magnetic susceptibility \(\chi\) tells us how easily the material gets magnetised.

  • If \(\chi\) > 0 but small ⇒ paramagnetic
  • If \(\chi\) < 0 ⇒ diamagnetic

Plugging \(M=\chi H\) into \(B=\mu_0(H+M)\) gives

\[ B=\mu_0(1+\chi)H=\mu_0\mu_r H=\mu H,\tag{5.14–5.15} \]

where

\[ \mu_r=1+\chi,\qquad \mu=\mu_0\mu_r. \]

So knowing any one of \(\chi,\;\mu_r,\;\mu\) lets you find the other two. 👌 :contentReference[oaicite:3]{index=3}

5 📏 Worked Example (quick numbers)

Solenoid core with \(\mu_r=400\), 1000 turns m−1, current \(I=2\) A:

QuantityAnswer
\(H = nI\)\(2\times10^{3}\,\text{A m}^{-1}\)
\(B=\mu_r\mu_0H\)\(1.0\;\text{T}\)
\(M=(\mu_r-1)H\)\(\approx8\times10^{5}\,\text{A m}^{-1}\)
Magnetising current \(I_M\)\(7.94\times10^{2}\,\text{A}\)

Notice how a high-\(\mu_r\) material makes the same coil much stronger! 💥 :contentReference[oaicite:4]{index=4}

6 🏷️ Quick Classification of Materials

DiamagneticParamagneticFerromagnetic
\(\chi\)−1 ≤ χ < 00 < χ < εχ ≫ 1
\(\mu_r\)0 ≤ \(\mu_r\)< 11 < \(\mu_r\)< 1+ε\(\mu_r\) ≫ 1

  • Diamagnets drift toward weaker field regions – think of them as gently repelled. :contentReference[oaicite:5]{index=5}
  • Paramagnets (small \(χ>0\)) lean toward stronger field, but only a little.
  • Ferromagnets (huge \(χ\)) are the “strong” magnets you stick on the fridge.

7 🌟 High-Yield NEET Nuggets

  1. Definition alert: \(M=\dfrac{m_{\text{net}}}{V}\) – memorize it! :contentReference[oaicite:6]{index=6}
  2. Core booster: Extra field inside a solenoid is \(B_m=\mu_0 M\). :contentReference[oaicite:7]{index=7}
  3. Relation trio: \(M\), \(H\), and \(B\) connect via \(B=\mu_0(H+M)\). :contentReference[oaicite:8]{index=8}
  4. Shortcut: \(\mu_r=1+\chi\) – turns susceptibility into permeability at once. :contentReference[oaicite:9]{index=9}
  5. Material ID: Sign & size of \(χ\) instantly tells you dia/para/ferro. :contentReference[oaicite:10]{index=10}

Keep these ideas handy, and magnetic questions will feel like attraction at first sight 😉