Molecular Orbital Energy Levels

For O₂ and F₂, orbitals fill in this order:

\[\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z\]

But for B₂, C₂, N₂, the order changes:

\[\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < \sigma 2p_z < (\pi^* 2p_x = \pi^* 2p_y) < \sigma^* 2p_z\]

Key twist: In B₂/C₂/N₂, the \(\sigma 2p_z\) orbital is higher in energy than \(\pi 2p_x\) and \(\pi 2p_y\)! 🔄

Electronic Configurations & Bond Behavior

Stability:

  • If bonding electrons (\(N_b\)) > antibonding electrons (\(N_a\)) → Stable molecule! 👍
  • If \(N_b < N_a\) → Unstable molecule. 👎

Bond Order (b.o.):

\[b.o. = \frac{1}{2}(N_b – N_a)\]

  • Positive b.o. → Stable molecule
  • Zero/Negative b.o. → Unstable
  • Bond order 1, 2, 3 = Single, double, triple bonds

Bond Length: Higher bond order → Shorter bond! 📏

Magnetic Nature:

  • All electrons paired → Diamagnetic (repels magnets) 🧲❌
  • Unpaired electrons → Paramagnetic (attracts magnets) 🧲✔️

Homonuclear Diatomic Molecules

MoleculeElectronic ConfigBond OrderStabilityMagnetism
H₂\((\sigma 1s)^2\)\(\frac{1}{2}(2-0)=1\)StableDiamagnetic
He₂\((\sigma 1s)^2(\sigma^* 1s)^2\)\(\frac{1}{2}(2-2)=0\)Unstable (doesn’t exist!)
Li₂\(KK(\sigma 2s)^2\)
(KK = filled \(\sigma 1s\) & \(\sigma^* 1s\))
\(\frac{1}{2}(4-2)=1\)Stable (in vapor phase)Diamagnetic
C₂\(KK(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p_x)^2(\pi 2p_y)^2\)\(\frac{1}{2}(8-4)=2\)Stable (in vapor phase)Diamagnetic
O₂\(KK(\sigma 2p_z)^2(\pi 2p_x)^2(\pi 2p_y)^2(\pi^* 2p_x)^1(\pi^* 2p_y)^1\)\(\frac{1}{2}(10-6)=2\)StableParamagnetic (2 unpaired e⁻!)

Fun fact: C₂’s double bond is made of two π bonds (not σ + π)! ✨

Hydrogen Bonding

When H is bonded to F, O, or N (super electronegative! ⚡), the shared electrons shift toward that atom. This leaves H partially positive (\(δ+\)), which then attracts a different F/O/N atom from another molecule.

Example: In HF chains:
– – – Hδ+–Fδ– – – – Hδ+–Fδ– – – –
Solid line = covalent bond, dotted line = hydrogen bond.

Why it forms: H becomes highly positive after electron loss → seeks negative partners! 💑

NEET Must-Knows 🔥

  1. Bond Order Magic: Calculate it with \(b.o. = \frac{1}{2}(N_b – N_a)\) → Predict stability & bond type!
  2. O₂’s Secret: Bond order 2 + paramagnetic (due to 2 unpaired e⁻ in π* orbitals).
  3. Hydrogen Bonding: Only with F/O/N! It’s a dotted line (–––) between molecules.