Molecular Shapes & Bonding

🔍 Why NH3 has stronger polarity than NF3:

NH3 dipole moment = \(4.90 \times 10^{-30}\) C m
NF3 dipole moment = \(0.80 \times 10^{-30}\) C m
Reason: In NH3, the lone pair’s pull adds to the N-H bonds’ polarity. In NF3, the lone pair pulls against the N-F bonds, reducing overall polarity! ⚡

⚖️ Fajans’ Rules (Covalent Character in Ionic Bonds):

  • ↑ Covalent character if: Small cation + Large anion
  • ↑ Covalent character if: Higher charge on cation (e.g., Al3+ > Na+)
  • Transition metal cations (\((n-1)d^nns^0\)) polarize anions more than noble-gas-config cations (\(ns^2np^6\))

Why? Strong cations pull anion’s electrons → shared electron density (like covalent bonds)! 🔗

🌟 VSEPR Theory (Predicting Molecular Shapes)

Golden Rule: Electron pairs repel each other and spread out as far as possible! 💥

Key Postulates:

  • Shape depends on valence electron pairs (bonding or lone pairs) around the central atom.
  • Repulsion strength: Lone Pair–Lone Pair (lp–lp) > Lone Pair–Bond Pair (lp–bp) > Bond Pair–Bond Pair (bp–bp)
  • Lone pairs occupy more space → stronger repulsion → squishes bond angles! 📏
  • Treat double/triple bonds as one “super pair”.

🚀 Shapes Without Lone Pairs (Central Atom)

Electron PairsShapeAngleExamples
2Linear180°BeCl2, HgCl2
3Trigonal Planar120°BF3
4Tetrahedral109.5°CH4, NH4+
5Trigonal Bipyramidal90°, 120°PCl5
6Octahedral90°SF6

🎯 Shapes With Lone Pairs (Central Atom)

Molecule TypeBond PairsLone PairsShapeExamplesAngle Change
AB2E21BentSO2120° → 119.5°
AB3E31Trigonal PyramidalNH3109.5° → 107°
AB2E222BentH2O109.5° → 104.5°
AB4E41See-SawSF4
AB3E232T-ShapedClF3
AB5E51Square PyramidalBrF5
AB4E242Square PlanarXeF4

Remember: Lone pairs squish bond angles! More lone pairs = smaller angles. 😊

💎 NEET Spotlight: Must-Know Concepts

  1. Dipole Moments: Compare NH3 vs. NF3 (lone pair alignment matters!).
  2. Fajans’ Rules: Predict covalent character in ionic compounds (cation size/charge is key!).
  3. VSEPR Shapes:
    • No lone pairs: Linear → Octahedral
    • With lone pairs: Bent (H2O), Pyramidal (NH3), T-shaped (ClF3)
  4. Lone Pair Repulsion: lp–lp > lp–bp > bp–bp → Bond angle reduction!
  5. Valence Bond Theory: Explains bond formation via atomic orbital overlap (beyond Lewis/VSEPR).

Keep practicing shapes – you’ve got this! 💪