Projectile Motion Notes

Equations of Motion

  • Position as a function of time: \[ r = r_0 + v_0 t + \frac{1}{2} a t^2 \]
  • Break into x and y components: \[ x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2 \] \[ y = y_0 + v_{0y} t + \frac{1}{2} a_y t^2 \]
  • Horizontal and vertical motions are independent!

Projectile Motion Basics

  • Horizontal motion: No acceleration (\(a_x = 0\)). Speed remains constant: \[ v_{0x} = v_o \cos \theta_o \]
  • Vertical motion: Acceleration due to gravity (\(a_y = -g\)): \[ v_{0y} = v_o \sin \theta_o \]
  • Path is a parabola: \[ y = x \tan \theta_o – \frac{g x^2}{2 (v_o \cos \theta_o)^2} \]

Key Formulas

  • Time to reach max height: \[ t_m = \frac{v_o \sin \theta_o}{g} \]
  • Total time of flight: \[ T_f = \frac{2 v_o \sin \theta_o}{g} \]
  • Max height: \[ h_m = \frac{(v_o \sin \theta_o)^2}{2g} \]
  • Horizontal range: \[ R = \frac{v_o^2 \sin 2\theta_o}{g} \] Max range at \(\theta_o = 45^\circ\): \(R_{max} = \frac{v_o^2}{g}\)

Important Concepts for NEET

  1. Independence of motions: Horizontal (constant speed) and vertical (constant acceleration) motions are separate.
  2. Key equations: Time of flight (\(T_f\)), max height (\(h_m\)), and range (\(R\)) are frequently tested.
  3. Symmetry: Time to max height is half the total flight time (\(t_m = T_f / 2\)).
  4. Range at angles: Angles \(45^\circ + \alpha\) and \(45^\circ – \alpha\) give the same range.
  5. Parabolic path: Projectiles follow a parabola due to constant horizontal velocity and vertical acceleration.

Example Summaries

  • Stone thrown horizontally:
    • Time to fall: \( t = \sqrt{\frac{2h}{g}} = 10 \, \text{s} \) (for \( h = 490 \, \text{m} \))
    • Final speed: \( \sqrt{v_x^2 + v_y^2} = 99 \, \text{m/s} \)
  • Cricket ball at \(30^\circ\):
    • Max height: \(10.0 \, \text{m}\)
    • Time of flight: \(2.9 \, \text{s}\)
    • Range: \(69 \, \text{m}\)