Energy Stored in a Capacitor 🔋
Move charge from one plate to the other and you do work. That work parks itself as electrostatic potential energy inside the capacitor.:contentReference[oaicite:0]{index=0}
1. Charging Up Step-by-Step 🏗️
- Mid-way through charging, the positive plate holds charge \(Q’\) while the negative plate holds \(-Q’\). The potential difference sits at \(V’ = \dfrac{Q’}{C}\).:contentReference[oaicite:1]{index=1}
- Shift a tiny bit of charge \(dQ’\) from the negative plate to the positive one; you must supply work
\(dW = V’\, dQ’ = \dfrac{Q’}{C}\, dQ’\).:contentReference[oaicite:2]{index=2} - Add up all those little bits:
\(W = \displaystyle\int_0^{Q} \dfrac{Q’}{C}\, dQ’ = \dfrac{Q^{2}}{2C}\).:contentReference[oaicite:3]{index=3}
2. Handy Energy Formulas 🧮
Rewrite the stored energy any way you like:
- \(W = \dfrac{1}{2}CV^{2}\) — perfect when you know \(C\) and the voltage 🔌:contentReference[oaicite:4]{index=4}
- \(W = \dfrac{Q^{2}}{2C}\) — handy if charge comes first ⚖️:contentReference[oaicite:5]{index=5}
- \(W = \dfrac{1}{2}QV\) — a quick mix of charge and voltage 🔄:contentReference[oaicite:6]{index=6}
3. Energy Lives in the Field ⚡
Think beyond plates—the energy actually fills the electric field between them.
- Surface charge density: \( \sigma = \dfrac{Q}{A}\).
- Electric field between the plates: \(E = \dfrac{\sigma}{\varepsilon_{0}}\).:contentReference[oaicite:7]{index=7}
- Stored energy for a parallel-plate capacitor (plate area \(A\), spacing \(d\)):
\(U = \dfrac{1}{2}\varepsilon_{0}E^{2} A d\). 🍰 (Notice \(Ad\) is the field’s volume.):contentReference[oaicite:8]{index=8} - Energy density of any electric field:
\(u = \dfrac{1}{2}\varepsilon_{0}E^{2}\). 📦:contentReference[oaicite:9]{index=9}
4. Quick Example 🚀
Single capacitor: A \(900\ \text{pF}\) capacitor hooked to a \(100\ \text{V}\) battery stores
\(Q = CV = 900\times10^{-12}\ \text{F}\times100\ \text{V} = 9\times10^{-8}\ \text{C}\).:contentReference[oaicite:10]{index=10}
Energy: \(W = \dfrac{1}{2}QV = 4.5\times10^{-6}\ \text{J}\). 🔋:contentReference[oaicite:11]{index=11}
Sharing charge: Disconnect the battery and connect this charged capacitor to an identical uncharged \(900\ \text{pF}\) capacitor. Each plate ends up with \(Q/2\); the common voltage drops to \(V/2\).
Total energy now: \(W_{\text{final}} = 2 \times \dfrac{1}{2}\left(\dfrac{Q}{2}\right)\left(\dfrac{V}{2}\right) = 2.25\times10^{-6}\ \text{J}\). 🍂 The “missing” half turns into heat and electromagnetic waves during the brief current rush.:contentReference[oaicite:12]{index=12}
Important Concepts for NEET 🎯
- The energy trio: \( \dfrac{1}{2}CV^{2} = \dfrac{Q^{2}}{2C} = \dfrac{1}{2}QV \)
- Energy density of an electric field: \(u = \dfrac{1}{2}\varepsilon_{0}E^{2}\)
- Connecting a charged capacitor to an identical uncharged one halves the stored energy—watch for “lost energy” questions
- For a parallel-plate capacitor, \(U = \dfrac{1}{2}\varepsilon_{0}E^{2}Ad\); area and spacing matter!
💪 Keep practicing and you’ll master capacitor energy in no time!