Velocity & Acceleration in Simple Harmonic Motion 🚀
Quick Recap of SHM ➡️
- Displacement: \(x(t)=A\cos(\omega t+\phi)\)
- Amplitude \(A\) is the farthest distance from the mean position.
- Angular frequency \(\omega=\dfrac{2\pi}{T}\), where \(T\) is the period.
Instantaneous Velocity 🏃♂️
- In a circle of radius \(A\) the speed is \(v=\omega A\).
- Along the line of oscillation: \(v(t)=-\,\omega A\sin(\omega t+\phi)\) :contentReference[oaicite:0]{index=0}
- The minus sign shows the direction is opposite to the positive \(x\)-axis whenever \(\sin(\omega t+\phi)\) is positive.
- Maximum speed: \(v_{\text{max}}=\omega A\).
Instantaneous Acceleration ⚡
- Differentiating once more (or using the reference circle) gives
- \(a(t)=-\,\omega^{2}A\cos(\omega t+\phi)=-\,\omega^{2}x(t)\) :contentReference[oaicite:1]{index=1}
- Acceleration always points toward the centre (restoring direction).
- Maximum magnitude: \(a_{\text{max}}=\omega^{2}A\).
Restoring Force 💪
Newton’s second law links force and acceleration:
\(F(t)=m\,a(t)=-\,m\omega^{2}x(t)=-\,k\,x(t)\), where
- \(k=m\omega^{2}\) and \(\displaystyle \omega=\sqrt{\dfrac{k}{m}}\). :contentReference[oaicite:2]{index=2}
- The direct proportionality \(F\propto -x\) is the hallmark of a linear harmonic oscillator.
Phase Relationships 🔄
- Velocity lags displacement by \(90^{\circ}\) (\(\pi/2\) rad).
- Acceleration lags displacement by \(180^{\circ}\) (\(\pi\) rad). :contentReference[oaicite:3]{index=3}
- Thus, when \(x\) is at its extreme, \(v=0\) and \(a\) is at its maximum toward the centre.
Worked Example 🎯
For the motion \(x=5\cos\,[2\pi t+\pi/4]\) (SI units):
- At \(t=1.5\;\text{s}\): displacement \(x=-3.535\;\text{m}\).
- Speed \(v=22\;\text{m s}^{-1}\).
- Acceleration \(a=140\;\text{m s}^{-2}\). :contentReference[oaicite:4]{index=4}
High-Yield Ideas for NEET 🌟
- \(a(t)=-\omega^{2}x(t)\) — acceleration is directly proportional and opposite to displacement.
- Restoring force \(F=-k x\) with \(k=m\omega^{2}\) and \(\displaystyle \omega=\sqrt{k/m}\).
- Maximum quantities: \(v_{\text{max}}=\omega A\) and \(a_{\text{max}}=\omega^{2}A\).
- Phase differences: velocity \(90^{\circ}\), acceleration \(180^{\circ}\) behind displacement.
- All three—\(x(t)\), \(v(t)\), and \(a(t)\)—are sinusoidal with identical periods.
Keep practicing—SHM problems ♥ love appearing on exams! 😊

