1. Raoult’s Law in One Line 🧪
For any component 1 in a liquid solution:
\(p_1 = x_1\,p_1^{0}\) :contentReference[oaicite:8]{index=8}
2. Ideal Solutions 👍
- Definition: They follow Raoult’s law for every composition.
- No heat or volume change: \( \Delta_{\text{mix}}H = 0 \) and \( \Delta_{\text{mix}}V = 0 \) 🔥➖📏:contentReference[oaicite:9]{index=9}
- Molecular view: A–A, B–B, and A–B attractions stay almost equal, so nothing “new” happens between molecules.
- Classic pairs: n-hexane + n-heptane, bromoethane + chloroethane, benzene + toluene.:contentReference[oaicite:10]{index=10}
3. Non-Ideal Solutions 👎
They break Raoult’s rule somewhere along the line. Two flavors appear:
3.1 Positive Deviation (vapour pressure rises) 🚀
- A–B attractions weaken compared with A–A or B–B.
- Molecules escape easily → higher vapour pressure.
- Examples: ethanol + acetone, carbon disulphide + acetone.:contentReference[oaicite:11]{index=11}
3.2 Negative Deviation (vapour pressure falls) 🌧️
- A–B attractions strengthen (extra hydrogen bonding or dipole bonds).
- Molecules hold tighter → lower vapour pressure.
- Examples: phenol + aniline, chloroform + acetone.:contentReference[oaicite:12]{index=12}
4. Azeotropes — The Un-separable Mix 🌀
- Binary mixture that boils at a constant temperature with identical liquid & vapour composition.
- Minimum-boiling azeotrope: Large positive deviation, e.g. 95 % (v/v) ethanol + water.:contentReference[oaicite:13]{index=13}
- Maximum-boiling azeotrope: Large negative deviation, e.g. 68 % HNO3 + 32 % H2O (393.5 K).:contentReference[oaicite:14]{index=14}
5. Why Do Deviations Happen? 💡
- Positive deviation: Adding solute breaks stronger self-bonds → easier escape.
- Negative deviation: New cross-bonds form and “lock” molecules in place.
High-Yield Ideas for NEET 🏆
- Remember \(p_1 = x_1\,p_1^{0}\) and what a straight-line vapor-pressure graph means.
- Zero heat/volume change marks an ideal solution — quick check question!
- Link positive vs negative deviation to strength of A–B interactions.
- Minimum vs maximum boiling azeotropes and their classic examples.
- Connect molecular interactions (hydrogen bonding, dipole forces) with observed macroscopic behavior.